Центральный аэрогидродинамический институт имени профессора Н. Е. Жуковского
ENG

Противодействие коррупции

Версия для печати

Гидродинамика и акустика всплеска свободно падающей капли: лабиринт гидродинамических, термодинамических и атомно-молекулярных процессов (масштабный анализ и эксперимент)

21 Июня 2016

11:00

Телемост ЦАГИ-ИТПМ СО РАН-СПбГПУ-НИИМ МГУ

Оnline-трансляция из ЦАГИ

ЦАГИ, корп. № 8, конференц-зал

Докладчик: Юлий Дмитриевич Чашечкин (ИПМех РАН), yulidch@gmail.com

Тезисы доклада "Гидродинамика и акустика всплеска свободно падающей капли: лабиринт гидродинамических, термодинамических и атомно-молекулярных процессов (масштабный анализ и эксперимент)"

Согласованными оптическими и акустическими методами исследована тонкая структура течений и акустических сигналов, образованных каплями чистой, окрашенной или соленой воды, спирта или нефти, падающими в воду. Первичный акустический сигнал содержит устойчиво повторяющиеся компоненты (крутой передний фронт, продолжительный спад с локальными экстремумами давления) и нерегулярные высокочастотные пакеты. Новые группы низкочастотных звуковых пакетов образуются с большим запаздыванием. Число, интенсивность и спектральный состав акустических сигналов нерегулярно меняются и определяются формой погружающейся капли.

На поверхности первичной каверны и венца вещество капли концентрируется в тонких волокнах, образующих регулярные линейчатые и сетчатые узоры, в которых выражены треугольные, четырех- и пятиугольные ячейки. Ячейки группируются в кольцевые полосы. Волоконная структура сохраняется при трансформации планарной картины распределения вещества капли в объемную в процессе дальнейшей эволюции течений, формирования капиллярных волн, струй и стримеров.

Интерпретация данных проводится на основе масштабного пространственно-временного анализа фундаментальной системы уравнений механики жидкостей с учетом вида термодинамических потенциалов в толще и вблизи свободной поверхности.

Работа выполнена при частичной финансовой поддержке ОЭММПУ РАН (проект IV-4-12) и РФФИ (грант 15-01-09235).



Назад к семинару
RSS
Яндекс.Метрика